
bulletin

A publication

of the

ESONE Committee

ISSUE No.5

November 1972

Supplement

PREFACE

The widespread adoption of the CAMAC system of modular instrumentation in computer controlled
real-time applications has generated a need for appropriate software. The ESONE Software Working
Group lJ.as therefore generated this proposal for suitable software statements in the form of a
language definition. These statements extend beyond those required to interact with CAMAC
hardware because of the real-time environment and the need to supplement existing languages.

In this preliminary form the language is presented to potential users for comment on its usefulness
in satisfying their needs and its suitability for implementation. This feedback is essential.

A wide range of facilities has been proposed so that appropriate subsets are available for different
implementations. It is hoped that this approach, together with the inclusion of controversial items,
will stimulate comment on the relative usefulness of the facilities.

During the development of the proposal it has been critically reviewed several times by the CAMAC
Software Working Group of the USAEC NIM Committee and incorporates its many contributions
and criticisms.

Interested individuals and organisations are invited to contact members of the software
Working Groups (see, p 42) or to send their comments promptly to either.

H. Halling, Secretary ESONE SWG,
Kernforschungsanlage Jiilich GmbH,
Zentrallabor fur Elektronik/NE,
517 JOLICH, Postfach 365, Germany.

Distributed by :

or S. Dhawan, Chairman NIM-CAMAC SWG,
Yale University, Sloane Laboratory,
NEW HAVEN, Connecticut 06520, U.S.A.

Commission des Communautes Europeennes
29, rue Aldringen
Luxembourg

Standard Software for CAMAC - Computer Systems

by

I. N. Hooton,

Chairman of the ESONE Software Working Group,

A.E.R.E., Harwell, England.

ESONE

SWG14/72

CAMAC

PROPOSAL FOR A CAMAC LANGUAGE

by the

ESONE COMMITTEE SOFTWARE WORKING GROUP

SUMMARY

This paper defines a language suitable for writing program statements
referring to CAMAC hardware. These statements fall into two main
classes, one being declaration statements associating names with various
CAMAC entities, the other specifying the CAMAC activities which take
place at run-time. The problem of implementation is briefly discussed.

Appendices give a proposed formal syntax and examples of how the
statements may be used. Sept. 1972

Contents

Page No.

Preface inside front cover

1. Introduction 5

2. Syntax Notation 7

3. Language Elements 8
3.1 Basic Symbols ... 8

3.1.1 Characters 8
3.1.2 Syntax Elements ... 8
3.1.3 CAMAC Hardware Elements 9

3.2 Translator Directives 9
3.2.1 Structure of Program 10

3.3 Declarations 10
3.3.1 Equivalence Statements 10
3.3.2 CAMAC Naming Statements 11
3.3.3 Demand Naming Statements 12
3.3.4 Software Naming Statements 13
3.3.5 Reference Statements ... 14
3.3.6 Order of Dec laration Sections 14

3.4 Action Statements ... 15
3.4.1 Labels ... 15
3.4.2 Repeat Qualif ier 15
3.4.3 Transfer Statements 15
3.4.4 Control Statements 18
3.4.5 Branching Statements 18
3.4.6 Executive Statements 18

4. Implementation 19

5. Future Extensions 20

6. References 20

Appendix 1 The Syntax of the Language 21

Appendix 2 Sample Programs 27

Membership of CAMAC Software Working Groups 42

Table 1 The Interpretation of Mnemonics into Function Codes ... 17

Figure 1 Hardware Addresses used in Sample Programs inside back cover

1. INTRODUCTION

This paper defines a CAMAC language, that is a language reflecting the characteristics defined in
EUR 41 OOe and EUR 4600e which are the detailed specifications of CAMAC hardware (Ref 1 and
Ref 2). Although the definition cannot be mandatory, its general adoption (or the adoption of sub­
sets derived from it) will have many advantages. Programs will be easier to write and, equally
important, easier to read; the transfer of program descriptions will be easier as the peculiarities of
the interface between the computer and CAMAC are eliminated; programs may be transferred
between compatible installations, and, finally, co-operation in the writing of translators will be
possible.

The CAMAC language defined in this report deals principally with those statements in a program
that are concerned with communication between the computer and the hardware associated with
CAMAC. Thus to write a complete program which also processes the information that comes from
(or is sent to) the CAMAC hardware, the CAMAC language must be associated with a more
conventional programming language. The latter may be an assembly language, a higher level language
such as Fortran, or an advanced language containing real-time features. The association of these two
languages, the CAMAC language and the host language, simplifies the use of CAMAC for data
acquisition and control.

The particular features of the CAMAC language which simplify the writing of programs are the
following:

(a) Descriptive names can be defined and used to refer to functional entities in a CAMAC system.
For example a register implementing a counting function at a particular sub-address of a
module may be given the name SCALER. Another register in the same module, even at the
same sub-address but accessed through group 2 functions, may be given the name STATUS. At
a higher level a collection of crates may be given the name EXPERIMENT, and a branch may
be given the name LAB2.

(b) The particular details of 1/0 formats and conventions of specific computers and system
controllers are not apparent to the application programmer.

(c) The book-keeping associated with block transfers can be organised and optimised by the system
software.

It must be understood that it is only possible to consider the use of this language in an environment -
(computer and programming system) having the ability to communicate with CAMAC. This may be
through assembly code, through sub-routine calls or through an input/output package in a higher
level language. The CAMAC language simply provides a standard format which, through a translator,
generates the code necessary to invoke these abilities. The language provides for all the hardware
facilities defined in EUR 41 OOe and EUR 4600e. A particular system may not have implemented all
these facilities and hence will not be able to make use of all the features of the language.

This definition has to serve three distinct groups of readers. The needs of the application programmer
are served by the informal descriptions of the properties of the language and by the examples.
Second, the translator writer's needs are served by the more formal syntactic definitions, which are
necessary to ensure that all the possible constructions will be recognised by, or explicitly rejected
by, a particular translator. Third, the designer of system controller hardware will find the definition
useful in designing a controller to match a particular computer to CAMAC.

Section 2 defines the notation used to express the formal syntax of the CAMAC language. Section 3
consists of the CAMAC language definition using both informal descriptions and the syntax
notation. This section is divided into several parts; the first of these (3.1) defines certain basic
elements which are used throughout the following definitions.

Transl~tor directives are defined in 3.2. These allow CAMAC language statements to be recognised
and also delimit sections of the CAMAC program.

A series of declaration formats are defined in 3.3. They allow the programmer to rename some of
the translator directives and the CAMAC function codes. They can be used in some cases to achieve
compatibility with the host language, in others to prevent conflict. They can be used to introduce
names· which have a direct meaning in the application area involved. They allow the programmer to
replace the set of defined English language mnemonics by others, possibly in his native language and
to introduce mnemonics for any of the undefined CAMAC function codes he may use. Other
declarations allow the naming of CAMAC hardware, either as individual items or as arrays,· the
naming of demands from CAMAC and the naming of computer locations as variables, arrays and
lists.

The statements which are used to specify the operations normally associated with CAMAC are
defined in 3.4. These are statements concerned with moving data, either single words or blocks
between CAMAC and the computer or concerned with control activity in CAMAC modules. It also
defines a conditional statement specifying branching on flag conditions. In the CAMAC definitions
the Q line is the primary physical flag but it has different meanings depending on the function code
and sub-address. Statements required for interaction with the operating-system, particularly in a
multi-task environment, are also proposed in this section.

It was mentioned earlier that this language is seen as being used in conjunction with another
language. Section 4 discusses the relationship between these two languages. It may be very close
when using embedded code or tenuous when using an autonomous CAMAC processor. These two
extremes are apparent in the examples.

Section 5 lists some of the possibilities for further development.

Appendix 1 brings the definitions together into a formal syntax for the language.

Appendix 2 contains examples showing how the various types of statement can be combined to
produce a program. It has been made more complex than is absolutely necessary in order to
introduce most of the defined statements and in particular to demonstrate the flexibility of the
CAMAC naming section.

6

2. SYNTAX NOTATION

The syntax notation is used to describe the structure of the language elements, not their meaning. It
indicates the order in which elements may, or must, appear, the punctuation that is required and the
options that are allowed.

(1) A notation variable is the name of a general class of elements in the programming language. A
notation variable is a string of characters chosen from the lower case letters, decimal digits and
hyphen. It must begin with a letter. The composite symbol ··= is used in this context with the
meaning "is defined as".

(2) A notation constant denotes the literal occurrence of the characters represented.

(3) Braces { } are used to denote the grouping of more than one element into a syntactic unit.
Individual notation variables or constants are themselves syntactic units.

(4) A vertical stroke I indicates that a choice is to be made. It may be interpreted as the equivalent
of "or".

(5) Square brackets [] denote options. Anything enclosed in such brackets may appear once or it
may not appear at all.

(6) Three dots ... denote the repetition of the immediately preceding syntactic unit none, one or
more times in succession.

(7) Spaces are optional immediately preceding or succeeding · ·= or I or [or] or { or } or ... and
between adjacent units. A space is mandatory between adjacent notation variables and adjacent
notation constants.

7

3. LANGUAGE ELEMENTS

3.1 Basic Symbols

3. 1. 1 Characters

letter::= A IB IC ID IE IF IG IH II IJ IK IL IM IN 10 IP IQ IRIS IT IU IV IW IX IY IZ
digit ::= o lll2l3l4lsl6l7l8l9
alphanumeric-character : := letter I digit
operator::= adop I mulop
adop : := + I - where + means add
mulop : := * I I where -means subtract

where * means multiply
where I means divide
as integer operators.

It has been proposed that the definition of operator be extended to include logical operators such
that
operator::= adop I mulop llogop ·
logop : := # I & I ! I @ where # means not

where & means and
where ! means inclusive or
where @ means exclusive or

The logical operators have lower precedence than adop and are written in the order of descending
precedence.

delimiter::= : I , I (I) I I = I ' I operator
Note the delimiter I I representing a space.

CAMAC is a free-format language. Multiple spaces or formatting characters (e.g. end-of-line,
tabulation) are syntactically equivalent to a single space. Spaces, or their equivalents, adjacent to
delimiters (including the delimiter 'space') are ignored by the syntax and may be used freely to aid
the physical layout of the program. All symbols inust be delimited by a space or its equivalent unless
some other delimiter is specified.

synta~-character : := alphanumeric-character I delimiter
non-syntax-character::=! l"l#l$1%1&1.1; 1<1>1?1®1[l\ll It I~
character : := syntax-character I non-syntax-character
The characters are the ASCII characters having binary form represented by the decimal numbers
from 32 to 95 inclusive (octal 40 to 13 7) Reference 3.

3.1.2 Syntax Elements

The basic syntax elements of the language are formed from the characters listed above with the
following constraints. A number of specific character strings are used as System Symbols, and these
are introduced at appropriate points in the text. Elementary character strings which the user
constructs are:
integer : := digit ...
denoting the positive decimal integral number represented by the string of digits, and
identifier::= letter [alphanumeric-character ...]
used as a name for an entity within the language.

It has been proposed that integer be defined to permit the presentation of integers in binary, octal,
decimal and hexadecimal form (see the definition of number in 3.4.3).

Identifiers identical to system symbols may not be used. The standard system symbols are listed in
Appendix 1.

8

3.1.3 CAMAC Hardware Elements

References to CAMAC hardware make use of B, C, N, A, I to represent Branch, Crate, Station­

number, Sub-address and Bit-position respectively. The symbols F, G 1 and G2 refer to the CAMAC
Function and to the Group 1 and Group 2 subsets of these functions. As an aid to programming G 1
and G2 are assigned as access modes of the hardware register. Other access modes are provided by
the qualifiers P, Q, RandS (see section 3.3.2). The symbol GL refers to the Graded-L register
within the system controller. The state of the Response line during a CAMAC operation is stored in
the system controller and is accessed directly as Q. Flags within modules are accessed as LAM or
STATUS depending on the: functions providing access.

The Command Accepted signal (X) is not directly specified in the CAMAC language but may be
accessed by a user defined flag S(integer).

3.2 Translator Directiv~es

The main function of these directives is to simplify the design of the CAMAC translator by defining
the limits of various types of information. The directives are in the form of English words. Those
which are used frequently may be equivalenced to a single symbol. Alternatively this re-naming may
be done as a preamble by the translator.

CAMACSEGMENT defines the start of a CAMAC segment within a total program. It precedes
the segment-name in the first statement in the CAMAC language. It
includes the attributes of BEGINCAMAC. It may not be equivalenced.

ENDSTA TEMENT is used to terminate each statement in the CAMAC language. It will usually
be equivalenced to a single symbol, for example a semi-colon (;).

BEGINCAMAC introduces a statement or a sequence of statements which are all in the
CAMAC language. It is not a separate statement but a prequalifier
preceding the statement. It may be equivalenced.

ENDCAMAC terminates the scope of BEGINCAMAC and the BEGINCAMAC attributes
ofCAMACSEGMENT. It includes the attributes ofENDSTATEMENT. It
may be equivalenced.

CAMACTASK defines the start of a task for separate execution. It precedes the task name
within the first statement of the task. It may be equivalenced.

TASKEND terminates the scope of the preceding CAMACTASK. It is a complete
statement and may be equivalenced.

CAMACSEGMENTEND terminates the scope of CAMACSEGMENT. It includes the attributes of
ENDCAMAC. It is a complete statement and may be equivalenced.

NOTE introduces a comment. It follows the last element of the effective state­
ment and is closed by any directive which has the attribute of

CEQV
CNAME
CDMD
CDCL
CREF
CACT

} {
ENDS T A TEMENT. It cannot include any such directive. It may be used
as the first element of a statement, i.e. a statement of comment only. It
may be equivalenced.
are section headers introducing the various declarative parts of the program.
They form part of a statement which may include a comment but which
must be terminated by ENDSTATEMENT or its equivalent. The section
headers may not be equivalenced. Each section is terminated by a new
section header.
is a section header for the action part of the program and may not be
equivalenced. It also ends the declarative parts of the program. The action
section is terminated by CAMACSEGMENTEND.

9

3.2.1 Structure of Program

The CAMAC statements of a combined-language program are contained within CAMAC segments. A
CAMAC segment extends from CAMACSEGMENT to CAMACSEGMENTEND directives. It is
defined as capable of independent compilation by the CAMAC translator. A segment may be written
exclusively in the CAMAC language or it may, by use of the ENDCAMAC-BEGINCAMAC bracketing
directives, overlap with host language statements.

A segment may contain both declaration statements and action statements. It may also contain one
or more CAMAC tasks. A task cannot contain declaration-statements. It may contain statements
which cause another task to be executed and so on. The lexical structure of a single CAMAC segment
may be illustrated informally as follows.

non-camac-text
CAMACSEGMENT segment-name terminator

CEQV
CNAME
CDMD declaration sections
CDCL
CREF

CACT
actions

CAMACTASK task-name-1 terminator
actions
TASKEND
CAMACTASK task-name-2 terminator
actions
TASKEND

CAMACSEGMENTEND
non-camac-text

3.3 Declarations

There are five classes of declaration statement, each in a defined section of the program. The first is
the class of equivalence statements which are of two different types, one allowing alternative names
for certain system words held in the translator symbol tables, the other allowing identifiers to be
associated with constant values known at compile time. The second class consists of those statements
used to allocate names to parts of the CAMAC hardware. The third class of statements is that which
associates names with demands from the CAMAC hardware. The fourth class consists of those state­
ments providing information about software buffers and other storage locations. The fifth class lists
those names which may be referenced by other program segments.

3.3.1 Equivalence Statements

There are two kinds of equivalence statement. The first is an EQV statement which allows the
programmer to give alternative names to certain special symbols. These symbols are certain of the
translator directives defined in para. 3.2 and the CAMAC function code forms F(n). The status flags
may also be equivalenced. The result of the EQV statement is effective after the recognition of the
terminator of the statement. The old symbol is not erased so there may be multiple forms of the
special system symbols. The new symbol introduced is restricted to be either a single non-syntax­
character or an identifier. System symbols may not be used on the left hand side of an EQV state­
ment.

The s~cond form of statement is an equals statement(=). This may be used to simplify much of the
elementary arithmetic used to arrive at the numerical values used particularly in the CAMAC naming

10

section. The statement allows integer values to be given to identifiers (symbolic constants) and the
combination of these integers in arithmetic expressions. A single pass structure is imposed on the
naming section by the rule that all symbolic constants must be given a value by appearing on the left
hand side of an equals statement before being used on the right hand side.

The equivalence statements are contained in a section defined by the following syntax.
ceqv-section : := ceqv-section-header ceqv-statement ...
ceqv-section-header : := CEQV terminator
terminator::= [comment] ENDSTATEMENT
comment::= NOTE [non-camac-text]

Non-camac-text is any string of characters not containing terminating directives or any substrings to
which they have been equivalenced.

ceqv-statement ::= ceqv-statement-body terminator
ceqv-statement-body ::= ceqv-s-b1 I ceqv-s-b2
ceqv-s-b1 ::= {non-syntax-character I identifier} EQV special-system-symbol

Special system symbols are defined in Appendix 1.
ceqv-s-b2 ::=symbolic-constant= {integer I expression}
symbolic-constant::= identifier
expression : := term [{adop term} ...]
term : := primary [{mulop primary} ...]
primary::= constant I (constant {adop constant} ...)
constant::= integer I symbolic-constant
adop ::= + I-
mulop ::= * I I

To minimise the use of parentheses the usual conventions are followed. Multiplication and division
have equal precedence and take pr~cedence over addition and subtraction which each have the same
precedence. For operators with equal precedence the order of association is from left to right.

It has been proposed that expression be defined so that a term may itself be an expression. This
would allow more elaborate forms and save the programmer from generating intermediate symbolic­
constants.

3.3.2 CAMAC Naming Statements

The main items that need naming are registers which are usually thought of as residing at a sub­
address, of a module, in a crate, on a branch. The statements of the naming section allow this long
reference to be stated explicitly or to be developed, for example, in an hierarchical manner by first
giving names to larger entities, e.g. branches and crates and using these in the subsequent naming of
smaller entities, e.g. modules and sub-addresses.

Certain qualifying information may be given in addition to the B, C, N, A, I values. One class is an
address extension indicating Group 1 or Group 2 registers (G 1, G2). If neither is specified G 1 is
assumed if such a qualifier is required. The second class defines the access mode of a data array or
sequence. Briefly these access qualifiers have the following meanings.

The qualifier P specifies that the named array of CAMAC registers is to be addressed in parallel.

The qualifier Q specifies that the named array is to be stepped through sequentially with the address
changes controlled by the Response (Q) from the module. This is the Address Scan mode defined in
EUR 4100e section 5.4.3.1.

The qualifier R specifies hardware which is to be accessed in the Repeat mode defined in EUR 41 OOe
section ·5.4.3.2. The hardware generates Q=1 during the Read or Write operation if it is ready to
participate in a data transfer. Otherwise it generates Q=O.

11

The qualifierS specifies hardware which is to be accessed in the Stop mode defined in EUR 41 OOe
section 5.4.3.3. The hardware generates Q= 1 during each Read or Write operation while the block of
data is being transferred and generates Q=O for the operation after the end of the block-.

Only one access qualifier can be given to a particular hardware name and must be explicitly declared.
When different modes are used at different points in a program then different names must be
declared.

The statements relating to CAMAC hardware name allocation are contained in a CAMAC naming
section defined in the following way.

c-name-section : := c-name-header c-nam~-statement ...
c-name-header ::= CNAME terminator
c-name-statement : := c-name-statement-body terminator
c-name-statement-body : := c-name-s-b 1 I c-name-s-b2
c-name-s-bl ::= c-name [(size)] =address-set [Gl I G2] [mode]
c-name : := identifier
size : := 1: constant If no size is specified c-name is assumed to be a
mode : := P I Q I R IS single element.

It has been proposed that size be defined as
size : := constant : constant

in order to permit values significant to the programmer to be used or to enable arrays to be
developed in a series of definitions.

address-set : := address-value [{ , address value} ...]
Address values are sufficiently specified CAMAC addresses, i.e. they contain all the necessary Branch,
Crate, Module or Sub-address references relative to their level.

address-value::= address-component [address-component ...]
address-component : := {c-name [(address-list)] } I {c-type (address-list)}
c-type ::= B IC IN lA II
address-list : := address-element [{ , address-element} ...]
address-element : := constant [: constant [: constant]]

Address-element permits an array to be specified. The interpretation when three constants are used
is "from the first, to the second incrementing by the third". With two constants the increment is
taken as one and with one constant reference is made to one member.

The address values must not have more than one component of a given c-type. The order of writing
the components has meaning when sequential access is used, the rightmost component is cycled
through first, then the second from the right and so on.

c-name-s-b2 ::= c-name [(size)] =EXT (c-type) [G 1 I G2] [mode]
This permits CAMAC hardware to be referred to in one segment even though the absolute BCNAI
values are not known. The size, G 1 or G2 and mode provide information required for the trans­
lation of the segment. The c-type specifies the lowest element in the hierarchy B, C, N, A, I (usually
A or I) so that appropriate functions may be generated. The companion segment which specifies the
hardware address must contain the c-name in its CREF section (see 3.3.5). The naming section is
given a single pass structure by the following rules.

a The CEQV section ~hich makes equivalences must precede the CNAME section in which they
are used so that all symbolic constants have values.

b All hardware names (c-name) must be associated with numerical values by having appeared on
the left-hand side of an address allocation statement before being used on the right-hand side.

3.3.3 Demand Naming Statements

The source of a particular demand must be known if it is to be controlled. Within a module the
source may be identified either by a subaddress or by a bit-position in the Lam Status Register (see

12

EUR 41 OOe (1972) section 5.4). The demand from a crate is controlled through a virtual module,
N30, at sub-address 10 (see EUR 4600e section A 1.6.1).

All these can be given CAMAC names. The CAMAC naming section also allows branches to be given
names, and so a branch demand can be associated with a name though the detailed control signals
will depend on the design of branch driver or system controller. -

Thus at all levels the demand signals can be associated with a CAMAC name which has to be defined
in the CNAME section of the program. These demand signals are then given demand names in a·
demand naming section, CDMD (CAMAC demand) with the following syntax.

c-dmd-section : := c-dmd-header c-dmd-statement ...
c-dmd-header : := CDMD terminator
c-dmd-statement ::= c-dmd-statement-body terminator
c-dmd-statement-body ::= c-dmd-s-bl I c-dmd-s-b2
c-dmd-s-b 1 : := demand-name= c-name [GL integer]
demand-name : := identifier

The GL integer indicates that the demand source is connected to the particular GL bit.
c-dmd-s-b2 ::=demand-name= EXT (c-type)

This permits a demand to be specified for use within a segment while the link to a c-name is defined
in another segment.

3.3.4 Software Naming Statements

There are two types of software name to be considered, one refers to data buffer areas which are
involved in transfers, the other refers to store locations holding CAMAC hardware addresses. The
section also includes a statement which can be used to load these locations with the values associated
with defined CAMAC hardware names.

The data buffer areas need further definition to indicate whether each named word has to hold the
whole 24 CAMAC Read Write bits or whether it can be limited to the computer word length. When
the transferred wordlength is 24 bits and the computer wordlength is less, then two (or more)
computer words must be allocated for each transferred word. The CAMAC word is right aligned in
two (or more) successive computer words with leading zeros filled.

The naming is done in a section introduced by a header CDCL (CAMAC declaration) with the
following syntax.

cdcl-section : := cdcl-section-header cdcl-statement ...
cdcl-section-header : := CDCL term ina tor
cdcl-statement : := cdcl-statement-body terminator
cdcl-statement-body : := cdcl-s-b 1 I cdcl-s-b2 I cdcl-s-b3 I cdcl-s-b4
cdcl-s-b 1 : := [d-type] d-item [{ , d-item} ...]
d-type ::= CAMACLENGTH I COMPUTERLENGTH

If no d-type is specified then COMPUTERLENGTH is assumed.

An alternative proposal defines
d-type ::= DATALENGTH (d)

where d specifies the minimum number of bits required to contain the transferred data.

d-item : := v-item I a-item I l-item
v-item ::=variable-name
variable-name : := variable
a-i.tem : := array-name (size)
array-name::= variable
l-item : := list-name (size) L
list-name : := variable

13

Access to an a-item is always by the array-name and a subscript which determines the element or
elements of the array to be accessed.

Access to an l-item can be either by the list-name subscripted as for an a-name, or by the list-name
without a subscript. In this latter case successive accesses are directed to consecutive elements of the
list.

cdcl-s-b2 : := p-type p-item [{ , p-item} ...]
p-type ::= CAMACADDRESS
p-item ::= p-name [(size)]
p-name : := variable
variable : := identifier
cdcl-s-b3 ::= p-name [(range)] = c-name [(range)]
range : := constant [: constant]
cdcl-s-b4 : := EXT e-item [{ , e-item} ...]
e-item : := v-item I a-item jl-item I p-item P

The identifiers used in this section should conform to the conventions of the host programming
system.

The problem of establishing linkages to the data processing part of the program and the protection
of the data buffers is the responsibility of the program writer using his knowledge of the total
programming system being used.

The translator may need a number of variables which are private in the sense that they are of no
interest to the application programmer but they would be passed to any host language programming
system. A number of identifiers must be reserved. The programmer is forbidden to use identifiers
starting with letters 00.

3.3.5 Reference Statements

Within a program containing separate segments it is necessary to be able to define the scope of
declarations. Segment names are assumed to be valid outside the segment in which they are declared.
CAMAC hardware names, demand names and task names are local to the segment in which they are
declared unless they are specifically listed as available to be referenced. This is done in a section
introduced by a header CREF (CAMAC references) with the following syntax.

c-ref-section : := c-ref-header c-ref-statement ...
c-ref-header : := CREF terminator
c-ref-statement : := c-ref-statement-body terminator
c-ref-statement body : := c-ref-s-b 1 I c-ref-s-b2 I c-ref-s-b3 I c-ref-s-b4 I c-ref-s-b5 I c-ref-s-b6 I

c-ref-s-b7
c-ref-s-bl ::=NAME c-name [{, c-name} ...]
c-ref-s-b2 : := DEMAND demand-name [{ , demand-name} ...]
c-ref-s-b3 ::=TASK task-name [{,task-name} ...]
c-ref-s-b4 : := VARIABLE variable-name [{ , variable-name } ...]
c-ref-s-b5 : :=ARRAY array-name [{ , array-name } ...]
c-ref-s-b6 : := LIST list-name [{ , list-name } ...]
c-ref-s-b7 : := ref-item [{ , ref-item} ...]
ref-item::= {c-name I demand-name I task-name I variable-name I array-name jlist-name}

· These declarations state that the names, which are fully defined within the segment, have validity
outside the segment and may be referenced by other segments using EXT declarations.

3.3.6 Order of Declaration Sections

The definitions do not specify the order of the various declaration sections and there may be more
than one of each in a segment. Certain rules are necessary to simplify any translator design. These
are as follows.

14

(1) All equivalences must be defined before being used.

(2) All symbolic constants must be assigned values before being used.

(3) All c-names must be defined before being used.

3.4 Action Statements

The statements which cause activity in the CAMAC system at run time are simple in concept and
few in number. These action statements involve information transfer between the computer and
CAMAC or within CAMAC. The information may be data, status or control. The CAMAC hardware
may be user modules or system hardware, crate controllers or system controllers.

The action statements are in a section introduced by a header CACT (CAMAC action) with the
following syntax.

action-section : := action-section-header action-statement ...
action-section-header : := CACT terminator
action-statement : := [label] {[repeat-spec] {transfer-statement I control-statement}} I

{branch-statement I executive-statement}

3.4.1 Labels

All statements defined in this section (3.4) may be labelled for reference.
label::= label-name :
label-name::= {letter I digit}

The label-name must conform to the conventions of the host programming system.

3.4.2 Repeat Qualifier

Transfer statements (3.4.3) and control statements (3.4.4) may be qualified by a repeat specification
which directly precedes the statement body and occurs after any label. ·

repeat-spec::= REPEAT (integer-denotation)
integer-denotation::= variable I constant

The repeat qualifier causes the operation to be repeated the specified number of times precisely as if
the unqualified statement had been written that number of times in sequence.

3.4.3 Transfer Statements

The characteristic of this group of statements is that they involve two data references, at least one
of which is in the CAMAC hardware, the external reference. In addition they will usually, but not
universally, involve a store location or an array of store locations, the internal reference.

The language does not allow reference to named registers such as "accumulator". Certain computers
and programming systems may have a uniform addressing structure in which registers and store are
treated in a uniform way. In such cases registers can be referenced.

Informally the syntax of the transfer statements is of the form
transfer-statement ::=transfer-action source destination

The transfer-action part of the statement has to allow the expression of all the CAMAC function
codes involving data transfer. They may be in the form F(n) where n is an appropriate integer
between 0 and 31, or they may be in the form of standard mnemonics as defined in table 1.

15

Alternatively the transfer-action may be a mnemonic defined by an equivalence statement. Possible
forms of the latter would be

LIRE EQV F(O)
SCHREIBE EQV F(l6)
NEWFUNCTION EQV F(6)

One of the standard mnemonics is TRANSFER. This is unique in that it involves two external
references. It implies reading data from the first reference, the source and then writing this same
data to the second reference, the destination.

Table 1 lists the interpretation of the standard mnemonics as CAMAC function codes.

The formal definitions of the transfer statements follow.
transfer-statement : := transfer-statement-body terminator
transfer-statement-body : := t-s-b 1 I t-s-b2 I t-s-b3 I t-s-b4 I t-s-b5
t-s-b 1 : := transfer-action-! external-reference internal-reference
transfer-action-! : := F(n 1) I READ I READCLR I READCOMP I READ LAM I READST AT I

MOVE
n 1 : := o 11 12131415161718127

t-s-b2 : := transfer-action-2 {number I internal-reference }external-reference
transfer-action-2 ::= F(n2) I WRITE I SETSEL I CLEARSEL I MOVE
n2 : := 16l17l18ll9l20 121 122123
number::= constant I binary I octal I hexadecimal
binaty ::=BIN' {0 II} ... '
octal : := OCT' { 0 II 1213 1415 16 17 } ... '
hexadecimal : := HEX' { 0 II 12 13 1415 16 1· 7 18 191 A I B I C I D I E I F } ... '

The maximum value of all numbers is 24 bits equivalent. It is proposed that the bracketing single
quotes (') be omitted.

internal-reference ::=variable-name I {array-name (array-spec)} I {list-name (array-spec)}
array-spec::= integer-denotation [: integer-denotation]

t-s-b3 : := {TRANSFER I MOVE} source destination
source : := external-reference
destination : := external-reference

t-s-b4 ::= {READ I MOVE }external-reference list-name [EXIT] label-name

t-s-b5 ::= { WRITE I MOVE }list-name external-reference [EXIT] label-name

These two transfer statements allow data to be accessed sequentially from arrays that have been
defined as lists (see section 3.3 .4). When the last word in the list is accessed the program branches
to label-name.

external-reference::= {c-name [(range)] } I {p-name [(array-spec)] } I direct-reference I
demand-name

direct-reference : := { [B(integer-denotation)] C(integer-denotation) N(integer-denotation)
A(integer-denotation) [!(integer-denotation)] [G 1 I G2] } I GL

GL refers to the information obtained-by a GL Request as the Graded-L word.
integer-denotation::= constant I variable

The direct reference only allows the specification of one CAMAC address. The integer-denotation
components refer to crate, station and sub-address values with optional branch and bit values. The
variable part of integer-denotation allows run time modifications of address.

16

TABLE 1-THE INTERPRETATION OF MNEMONICS INTO FUNCTION CODES

EXTERNAL REF FUNCTION
MNEMONIC STATEMENT-BODY c·type G1/G2 CODE REMARKS

READ or MOVE t-s-b1, t-s-b4 A G1 F(O)
A G2 F(1)

READCLR t-s-b1 A G1 F(2) Note 1

READCOMP t-s-b1 A G1 F(3) Note 1

READ LAM t-s-b1 A NIL F(8) Note2

READSTAT t -s-b1 A NIL F(27) Note2

WRITE or MOVE t-s-b2, t-s-b5 A G1 F(16)
A G2 F(17)

SETSEL t-s-b2 A G1 F(18)
A G2 F(19)

CLEARSEL t-s-b2 A G1 F(21)
A G2 F(23)

TRANSFER t-s-b3 A G1 F(O)
from source or A G2 F(1)

MOVE A G1 F(16)
to destination A G2 F(17)

CLEAR c-s-b1 A G1 F(9)
A G2 F (11)
I G1 F(21)

Note 3 I G2 F(23)

CLEAR LAM c-s-b1 A NIL F(10) Note2
I G2 F(23) at A(12) Note 3

ENABLE A NIL F(26) Note2
or c-s-b1 I' G1 F(18) Note3
SET I G2 F(19) Note3

DISABLE c-s-b1 A NIL F(24) Note2
I G1 F(21) Note3
I G2 F(23) Note3

EXECUTE c-s-b1 A NIL F(25) Note2

INITIALISE c-s-b2 B - Generate BZ
c F(26) at N(28) A(8)

SETINHIBIT c-s-b2 c F(26) at N(30) A(9)

CLEARINHIBIT c-s-b2 c F(24) at N(30) A(9)

ENABLE INT c-s-b2 B Enable BD input
c F(26) at N(30) A(10)

DISABb.EINT c-s-b2 B Disable BD input
c F(24) at N(30) A(10)

CLEARSYS c-s-b2 c F(26) at N (28) A(9)

LAM branch A NIL F(8) Note2
Note4 I G2 F(1) at A(14)

STATUS branch A NIL F(27) Note2
Note4 I G2 F(1) at A(14)

I G1 F(O)

Note 1: If no group is specified Group 1 is assumed. The specification of Group 2 is an error condition.

Note 2: The specification of Group 1 or Group 2 is an error condition.

Note 3: Bit(s) 1 must be set in the internal reference

Note 4: Or any name equivalenced

17

3.4.4 Control Statements

These have a slightly simpler form as they do not involve an internal reference.
control-statement : := control-statement-body terminator
control-statement-body : := c-s-b 1 I c-s-b2
c-s-b 1 : := control-action- I external-reference
control-action- I::= F(n3) !CLEAR ICLEARLAM !ENABLE I DISABLE !EXECUTE I SET
n3 : := 9110 III II2II3II4IISII8II ~ 121 I23I24I2SI26I28I29I30 131

c-s-b2 ::= control-action-2 external-reference
control-action-2 ::=INITIALISE I SETINHIBIT I CLEARINHIBIT I ENABLEINT I DISABLEINT I

CLEARSYS

The control statements are divided into two classes due to the different address domain of the
external reference. For class 1, in common with all other action statements, this is at c-type A (sub­
address) or !(bit-position). For class 2 it is at either c-type C (crate) orB (branch).

3.4.5 Branching Statements

These statements are used to specify unconditional branching and branching depending on the
condition of the external hardware. There is one response defined in CAMAC, the Q line. It will be
referred to as LAM when it gives the response to F(8), as STATUS when it gives the response to
F(27) and Q when it is used to refer simply to the Response received from the last CAMAC oper­
ation. There may also be flags S(integer) in the system controller which are inherently implement­
ation dependent. Names can be assigned to them in an equivalence section.

The syntax of the branch statement is as follows.
branch-statement::= branch-statement-body terminator
branch-statement-body : := [condition flag] GOTO label-name
condition::= IF I IFNOT
flag : := { camac-flag external-reference} I system-flag
camac-flag : := LAM I STATUS
system-flag::= Q I {S(integer)}

3.4.6 Executive Statements

The applications of CAMAC are often in fields which depend critically on timing and the synchro­
nisation of tasks. In some implementations of the combined language it is desirable or even essential
to separate the CAMAC language and host language statements into distinct segments. It is not then
possible to rely exclusively on the host language for the executive calls required. The following
statements are therefore under active consideration for inclusion in the CAMAC language.

executive-statement::= executive-statement-body terminator
executive-statement-body ::= e-s-b 1 I e-s-b2 I e-s-b3 I e-s-b4 I e-s-b5 I e-s-b6

e-s-bl ::=TERMINATE I QUIT (task-name)
TERMINATE is used within a task to indicate that it has completed.
QUIT is used within a task to suspend it. A further stimulus is expected which will

cause the task to be resumed.
These two statements are used in CAMAC tasks which are executed in response to an external
stimulus.

18

e-s-b2 ::={INITIATE lAWAIT !TERMINATE jDONOW}(task-name)
INITIATE schedules the task (task-name) to run concurrently.
AWAIT suspends the current activity unless or until the task (task-name) has completed.

TERMINATE causes the task (task-name) to terminate.
DONOW combines INITIATE and AWAIT, that is it schedules the task (task-name) to

run and suspends the current activity until the task has completed. It is the
analogue of "CALL" in non-real-time systems.

These statements are used by the program controlling a task.

e-s-b3 ::= ACTIVATE (task-name, demand-name)
ACTIVATE schedules the task (task-name) to run concurrently on the demand (demand­

name).

e-s-b4 ::=ALLOCATE demand-name PRIORITY (integer-denotation)
ALLOCATE gives a software controlled priority in the demand-structure as compared with

the hardwired priority available in the GL pattern.

All the above statements provide for interaction with the operating system and are therefore only
appropriate in a suitable environment. Such statements are however essential in a real-time-multi­
tasking situation.

e-s-bS : := LINK (demand-name, label-name)
LINK connects a demand-name to a location in order to make use of suitable host

language statements.

e-s-b6 ::=INITIALISE (list-name)
INITIALISE causes the next transfer to access the first item in the list.

4. IMPLEMENTATION

As there are none of the usual data processing statements in the CAMAC language it must be used
in conjunction with a conventional programming language. Thus two translation processes may be
necessary before a program can be effective. One is the translation of the CAMAC language, the
other is the translation of the data processing language. The reiationship between the two processes
may be very close or very tenuous.

The close relationship is typified by an application or programming style in which CAMAC
language statements and data processing language statements are intermixed and there is no clear
functional separation between the two parts of the program. In this case the development of the
CAMAC language translator will be simplified if use can be made of the data processing language
translator which would then act as a host for the CAMAC language. From this follows the idea of a
preprocessing translator which accepts a program written in the mixed language, the CAMAC
language and the host language, and produces as output a program entirely in the host language. The
host language is therefore the target language of the translator.

The tenuous relationship exists when the overall program is written in separately compiled sections
which are later consolidated by a loader program. Here the CAMAC language statements do not
occur in the same sections as the processing language statements. The target language is then the
instruction code required by the hardware or software controlling CAMAC in a form acceptable by
the loader.

A single translation process is sufficient if an existing data processing language is extended to

19

include CAMAC statements, or if a data processing language is developed which includes CAMAC.

These three approaches are respectively for a mixture of language statements, two independent
languages and a single language. The problems of implementation vary greatly with the approach
adopted.

Within the CAMAC language there are definitions which allow the easy expression of statements
which can evoke all the complex possibilities defined in EUR 41 OOe and EUR 4600e. Particular
implementations need not provide all the facilities defined. In these cases an appropriate sub-set of
the complete language may be selected and used in the form and spirit of this definition.

Facilities within the translator can augment those of the language definition. The depth of error
diagnosis should be considered for example. Helpful documentation aids could be provided, various
forms of listing and symbol tables could be provided as options. This would be particularly
important for debugging with an implementation using a host language.

5. FUTURE EXTENSIONS

Certain other facilities have been briefly considered by the Software Working Group and these may
result in additional definitions at a later stage.

The possibility of using the contents of external addresses directly as operands has been discussed.
Statement types may be added to allow arithmetic and logic operations between variables at least
one of which is in CAMAC hardware.

Statement types may be added to allow the specification of privilege and the implementation of
protection facilities.

6. REFERENCES

1. CAMAC: A modular instrumentation system for data handling. Description and Specification.
EURATOM EUR 41 OOe 1972.

2. CAMAC: Organisation of multi-crate systems. Specification of the Branch Highway and
CAMAC Crate Controller Type A. EURATOM EUR 4600e 1972.

3. Standard Code for Information Interchange. USA Standard X34 1968. Available from:
USA Standards Institute, 1410 Broadway, New York, N.Y.l0016.

20

Appendix 1

THE SYNTAX OF THE LANGUAGE

This appendix brings together all the definitions from section 3 and uses the notation specified in
section 2.

It is an analytical approach starting from the definition of a program and continuing until either. a
basic-element or a system-symbol is reached. For convenience the basic-elements are grouped
together and the statements in which they are defined are listed below:

i-d (integer-denotation) 173 text 182
constant 17 5 non-camac-text 184
symbolic-constant 176 terminator 183
integer 177 adop (operator) 192
variable 178 mu1op (operator) 193
identifier 179 non-syntax-character 194

The system-symbols each consist of a string of characters and are listed in statements 200 to 233.
System-symbols may be divided into two classes, special-system-symbols (see 201-209) which may
be equivalenced and fixed symbols (see 210- 233) which may not be equivalenced.

A definition of non-camac-text is as follows.

Non-camac-text is any string of characters excluding the symbol CAMACSEGMENT and any special­
directive (see 202) or any symbol equivalenced to (I special-directive.

SYNTAX

1. program::= [non-camac-text] {camac-segment [non-camac-text] } ...

2. camac-segment ::=segment-header [text] segment-body [text] segment-terminator

3. segment-header::= CAMACSEGMENT segment-name terminator

4. segment-name::= identifier

5. segment-body ::=main-part [text] [{task-part [text]} ...]

6. main-part::= {[text] 9efinition-section} ... [text] [action-section]

7. definition-section : := c-eqv-section I c-name-section I c-dmd-section I c-dcl-section I
c-ref-section

8. c-eqv-section ::= c-eqv-section-header c-eqv-statement ...

9. c-eqv-section-header ::= CEQV terminator

1 0. c-eqv-statement : := c-eqv-statement-body terminator

11. c-eqv-statement-body : := c-eqv-s-b 1 I c-eqv-s-b2

1 2. c-eqv-s-b I : := {non-syntax-character I identifier} EQV special-system-symbol

13. non-syntax-character see 194

14. special-system-symbol see 201

15. c-eqv-s-b2 ::=symbolic-constant= {expression I integer}

16. expression : := term [{adop term} ...]

17. term::= primary [{mulop primary} ...]

18. primary : := constant I (constant {adop constant} ...)

1 9. c-name-section : := c-name-section-header c-name-statement ...

21

20. c-name-section-header ::= CNAME terminator

21. c-name-statement ::= c-name-statement-body terminator

22. c-name-statement-body : := c-name-s-b 1 I c-name-s-b2

23. c-name-s-b1 ::= c-name [(size)] =address-set [G1 I G2] [mode]

24. c-name : := identifier

25. size::= 1 : constant

26. address-set::= address-value [{ , address-value} ...]

27. address-value::= address-component ...

28. address-component : := { c-name [(address-list)] } I {c-type (address-list)}

29. c-name see 24

30. c-type ::= B IC IN lA JI
31. address-list : := address-element [{ , address-element} ...]

32. address-element::= constant [:constant [:constant]]

33. mode::= P IQ IRIS
34. c-name-s-b2 ::= c-name [(size)] =EXT (c-type) [G1 I G2] [mode]

35. c-name see 24

36. size see 25

37. c-type see30

38. mode see 33

39. c-dmd-section ::= c-dmd-section-header c-dmd-statement ...

40. c-dmd-section-header ::= CDMD terminator

41. c-dmd-statement ::= c-dmd-statement-body terminator

42. c-dmd-statement-body ::= c-dmd-s-b1 I c-dmd-s-b2

43. c-dmd-s-b 1 : := demand-name = c-name [GL integer]

44. demand-name::= identifier

45. c-name ·see 24
46. c-dmd-s-b2 ::=demand-name= EXT (c-type)

4 7. demand-name see 44

48. c-type see 30
49. c-dcl-section : := c-dcl-section-header c-dcl-statement ...

50. c-dcl-section-header : := CDCL terminator

51. c-dcl-statement : := c-dcl-statement-body terminator

52. c-dcl-statement-body : := c-dcl-s-b 1 I c-dcl-s-b2 I c-dcl-s-b3 I c-dcl-s-b4

53. c-dcl-s-bl ::= [d-type] d-item [{, d-item} ...]

54. d-type ::= COMPUTERLENGTH I CAMACLENGTH

55. d-item ::= v-item ! a-item]l-item

56. v-item ::=variable-name

57. variable-name::= variable

58. a-item : := array-name (size)

59. array-name : := variable

60. size see 25

61. l-item::= list-name (size) L

62. list-name::= variable

63. size see 25
64. c-dcl-s-b2 ::= p-type p-item [{, p-item} ...]

•
65. p-type ::= CAMACADDRESS

66. p-item ::= p-name [(size)]

67. p-name ::=variable

22

68. size see 25
69. c-dcl-s-b3 ::= p-name [(range)] = c-name [(range)]

70. p-name see 67

71. c-name see 24

72. range::= constant [:constant]

73. c-dcl-s-b4 ::=EXT e-item [{, e-item } ...]

74. e-item ::= v-item I a-item \ l-item I p-item P

75. v-item see 56

76. a-item see 58

77. l-itemsee61

78. p-item see 66

79. c-ref-section : := c-ref-section-header c-ref-statement ...

80. c-ref-section-header : := CREF terminator

81. c-ref-statement : := c-ref-statement-body terminator

82. c-ref-statement-body : := c-ref-s-b 1 I c-ref-s-b2 I c-ref-s-b3 I c-ref-s-b4 I c-ref-s-b5 I
c~e~~b6 I c~e~~b7

83. c-ref-s-bl ::=NAME c-name [{, c-name} ...]

84. c-ref-s-b2 ::=DEMAND demand-name [{,demand-name} ...]

85. c-ref-s-b3 ::=TASK task-name [{,task-name} ...]

86. c-ref-s-b4 ::=VARIABLE variable-name [{ , variable-name} ...]

87. c-ref-s-b5 ::=ARRAY array-name [{,array-name} ...]

88. c-ref-s-b6 ::=LIST list-name [{ , ~ist-name} ...]

89. c-ref-s-b7 ::=ref-item [{ , ref-item } ...]

90. ref-item : := c-name I demand-name I task-name I variable-name I array-name I
list-name

91. c-name see 24

92. demand-name see 44

93. task-name::= identifier

94. variable-name see 57

95. array-name see 59

96. list name see 62
97. action-section : := action-section-header [text] {action-statement [text] } ...

98. action-section-header : := CACT terminator
99. action-statement : := [label] {executive-statement I { [repeat-spec] {transfer-statement

control-statement}} I branch-statement}

100. label : := label-name :

101. label-name : := {letter : digit} ...

102. executive-statement : := executive-statement-body terminator

103. executive-statement-body::= e-s-bl I e-s-b2 I e-s-b3 I e-s-b4 I e-s-b5

1 04. e-s-b 1 : := TERMINATE I QUIT
105. e-s-b2 ::={INITIATE I AWAIT I TERMINATE I DONOW}(task-name)

106. task-name see 93
107. e-s-b3 ::=ACTIVATE (task-name, demand-name)

108. task-name see 93

109. demand-name see 44
110. e-s-b4 : := ALLOCATE demand-name PRIORITY i-d

111. demand-name see 44

112. e-s-b5 : := LINK (demand-name, label-name)

113. demand-name see 44

114. label-name see 101

115. repeat -spec : := REPEAT (i-d)

116. transfer-statement : := transfer-statement-body terminator

117. transfer-statement-body : := t-s-b 1 I t-s-b2 I t-s-b3 I t-s-b4 I t-s-bS

118. t-s-b 1 : := transfer-action-1 external-reference internal-reference

119. transfer-action-1 ::= {F(nl)} I READ I READCLR I READCOMP I READLAM I

READSTAT I MOVE

120. n 1 : := 0 1112 l3 1415 16 17 18 12 7
121. external-reference::= { c-name [(range)] } I {p-name [(array-spec)]} I

122.

123.

c-name see 24

range see 72

124. p-name see 6 7

direct-reference I demand-name

125. array-spec::= i-d [:i-d]

126. direct-reference::= {[B(i-d)] C(i-d) N(i-d) A(i-d) [l(i-d)] [Gl I G2]} I GL

127. internal-reference::= variable-name I {array-name (array-spec)} I

{list-name (array-spec)}

128. variable-name see 57

129. array-name see 59

130. list-name see 62

131. array-spec see 125

13 2. demand-name see 44

133. t-s-b2 ::= transfer-action-2 {number I internal-reference }external-reference

134. transfer-action-2 ::= {F(n2)} I WRITE I SETSEL I CLEARSEL I MOVE

135. n2::= I6II7!18II9I20I2I I22 I23

136. number::= binary I octal I hexadecimal I constant

137. binary::= BIN'{O 11 } ... '

138. octal::= OCT' {0 II I2 I3I4IS I6 I7} ... '

139. hexadecimal::= HEX'{O lli213 14ISI6I7I8I9 IA IB IC ID IE IF} ... '
140. internal-reference see 127

141. external-reference see 121

142. t-s-b3 : := {TRANSFER I MOVE} source destination

143. source : := external-reference see 121

144. destination : := external-reference see 121

145. t-s-b4 : := {READ I MOVE} external-reference list-name [EXIT] label-name

146. t-s-bS ::= {WRITE I MOVE} list-name external-reference [EXIT] label-name

14 7. external-reference see 121

148. list-name see 62

149. label-name see 101

150. control-statement : := control-statement-body terminator

151. control-statement-body : := c-s-b I I c-s-b2

152. c-s-b I : := control-action-1 external-reference

153. contrcl-action-1 ::= {F(n3)} I CLEAR I CLEARLAM I SET I ENABLE I

DISABLE I EXECUTE

154. n3 : := 9 110 III 112113 I14I1SI18I19 I20 121 1221231241 :s 126128129130 131
155. external-reference see 121

156. c-s-b2 : := control-action-2 external-reference

24

157. control-action-2 ::=INITIALISE I SETINHIBIT I CLEARINHIBIT I
ENABLEINT j DISABLElNT } CLEARSYS

158. external-reference see 121

159. branch-statement::= branch-statement-body terminator

160. branch-statement-body : := [condition flag] GOTO label-name

161. condition : := IF I IFNOT

162. flag : := { camac-flag external-reference} I system-flag

163. camac-flag ::=LAM I STATUS

164. external-reference see 121

165; system-flag::= Q I {S(integer)}

, 166. label-name see 101
167. task-part : := task-header [text] action-section [text] task-terminator

168. task-header::= CAMACTASK task-name terminator

169. task-name see 93

170. action-section see 97

1 71. task-terminator : := T ASKEND

172. segment-terminator::= CAMACSEGMENTEND

173. i-d ::=integer-denotation

174. integer-denotation::= constant I variable

175. constant::= symbolic-constant I integer

176. symbolic-constant::= identifier see 179

177. integer ::= digit ... see 189

178. variable::= identifier

179. identifier::= letter [alphanumeric-character ...]

180. letter see 188

181. alphanumeric-character see 187

182. text::= ENDCAMAC non-camac-text BEGINCAMAC

183. terminator::= [NOTE non-camac-text] ENDSTATEMENT

184. non-camac-text ::=character ...

185. character::= syntax-character I non-syntax-character

186. syntax-character::= alphanumeric-character I delimiter

187. alphanumeric-character::= letter I digit

188. letter::= A IB IC ID IE IF IG IH II IJ IK IL IM IN 10 IP IQ IRIS ITIU IV IW IX IY IZ

189. digit : := 0 II 1213141516171819

190. delimiter : := , I : I (I) I I= I' I operator

191. operator::= adop I mulop

1 92. adop : := + I -
193. mulop ::= * I I
194. non-syntax-character : := ! I" I# I $I% I & 1·1 ; I< I> I? I@ I [I\ I l It 1-

25

SYSTEM SYMBOLS

200. system-symbols : := special-system-symbols I fixed-symbols

201. special-system-symbols::= special-directive I function I camac-flag I system-flag I radix
202. special-directive : := BEGINCAMAC I ENDCAMAC I NOTE I ENDSTA TEMENT I

CAMACTASK I TASKEND I CAMACSEGMENTEND
203. function::= F {nl I n2 I n3}

204. nl ::= 0 II 1213\415161718127
205. n2 : := I6II7\I8II9I20 121 122123

206. n3 : := 9110 Ill ll2 l l3ll4ll5 118119120 121 l22l23l24l25l26l28l29l30 131
207. camac-flag ::=LAM I STATUS
208. system-flag::= Q I {S(integer)}

209. radix : := BIN I OCT I HEX
210. fixed-symbols::= directive I software-symbol I camac-symbol I mnemonic

211. directive : := CAMACSEGMENT I CEQV I CNAME I CDMD I CDCL I CREF I CACT I EXT
212. software-symbol::= EQV I L I P I REPEAT I EXIT I GOTO I NAME I DEMAND I

TASK I VARIABLE I ARRAY I LIST I d-type I p-type I condition
213. d-type ::= COMPUTERLENGTH I CAMACLENGTH
214. p-type : := CAMACADDRESS
215. condition::= IF I IFNOT
216. camac-symbol ::= Gl I G2 I GL I c-type I mode

217. c-type ::= B IC IN lA II
218. mode::= P IQ IRIS
219. mnemonic::= executive-action I transfer-action I control-action

220. executive-action : := e-a 1 I e-a2 I e-a3 I e-a4
221. e-al ::=TERMINATE 1. QUIT

222. e-a2 ::=INITIATE I AWAIT I TERMINATE I DONOW
223. e-a3 ::=ACTIVATE
224. e-a4 ::=ALLOCATE I PRIORITY I LINK I INITIALISE
225. transfer-action::= t-al I t-a2 I t-a3 I t-a4 I t-a5
226. t-al::= READ I READCLR I READCOMP I READLAM I READSTAT I MOVE
227. t-a2 ::=WRITE I SETSEL I CLEARSEL I MOVE
228. t-a3 : := TRANSFER I MOVE
229. t-a4 ::=READ I MOVE
230. t-a5 : := WRITE I MOVE
231. control-action : := c-a 1 I c-a2
232. c-al ::=CLEAR I CLEARLAM I SET I ENABLE I DISABLE I EXECUTE
233. c-a2 ::= INI~IALISE I SETINHIBIT I CLEARINHIBIT I ENABLEINT I DISABLEINT I

CLEARSYS

26

Appendix 2

SAMPLE PROGRAMS

Two examples are given of the use of the CAMAC language. These have been chosen solely to
illustrate the form of statements used. The applications are approximations to real jobs but the host
languages used are entirely imaginary. The hardwarlis common to both examples and permits two
tests (TESTA and TESTB) to be performed. The duration of the tests is controlled by counters fed
with timing pulses or other event signals. In the first example a purely sequential procedure is
followed. TESTA is performed and the results are printed out, followed by TESTB and its results.
The cycle then recommences and continues until halted by a manual STOPCONTROL. In this
example CAMAC statements are embedded in the host language program and the sequence is
controlled by interrupts.

In the second example the two tests proceed in parallel and make use of a common print routine
whenever the results are available. The host language or operating system is assumed to have
specified multi-task scheduling calls. In this example the CAMAC language statements are separate
from host language statements.

Comments that naturally belong to the program are in upper case, while those which describe or
explain the language appear in normal typescript.

The program is headed with its name in the host language and this is followed by the CAMAC
language segment header. The segment opens with the equivalence section of the declarations.

CAMAC-EXAMPLE-ONE;
CAMACSEGMENT EXAMPLEONE
NOTE EQUIVALENCE DECLARATIONS

CEQV ENDSTATEMENT

ENDSTATEMENT
ENDST A TEMENT

EQV ENDSTATEMENTENDSTATEMENT
? EQV BEGINCAMAC.
" EQV ENDCAMAC.
\ EQV NOTE.

The period(.) cannot be used as equivalent to the terminator ENDSTATEMENT in the statement
that makes the equivalence. These equivalences reduce the effort required in program writing and
may be chosen in relation to the host language or to improve readability of the program. In these
examples the period (.) is used as a statement terminator in comparison with semi-colon (;) assumed
for the host language. This enables the reader to distinguish between statements in the defined
CAMAC language and the fictitious host language.

NOTE THE CAMAC ENABLE AND DISABLE FUNCTIONS MAY BE USED TO CONTROL
DATA-TAKING OR TO CONTROL THE GENERATION OF DEMANDS; THE
FOLLOWING EQUIVALENCES ARE MADE SO THAT THE PROGRAM IS EASIER TO
UNDERSTAND.

TAKEDATA
STOPDATA
ENABLAM
DISABLAM
RESETLAM

EQV
EQV
EQV
EQV
EQV

F(26). -
F(24).
F(26).
F(24).
F(l 0).

This completes the equivalencing and may be immediately followed by the hardware declarations
without having to use BEGINCAMAC or its equivalent.

*'See Figure 1, inside 1he back cover.

27

\ CAMAC NAMING SECTION.

CNAME. APPARATUS
CONTROLCRATE
z

= B(l).
= APPARATUS C(1).
= CONTROLCRA TE.

These declarations assign the names APPARATUS to Branch 1 and CONTROLCRA TE to Crate 1 on
that Branch. This method of naming permits a simple modification to the program if either the
Branch or the Crate are reassigned. The name Z is used subsequently as a shortened form for
CONTROLCRA TE.

CLOCK = Z N(l).
SECONDS = CLOCK A(O).
MINUTES = CLOCK A(l).
HOURS = CLOCK A(2).
TIME (1 :3) = HOURS, MINUTES, SECONDS.

This continuation of the naming technique permits modifications of the hardware address of
CLOCK without disturbing the definition of the hardware array TIME.

COUNTER
TALLY
TALLYCHECK

= Z N(2).
COUNTER A(O).

= COUNTER A(l).

NOTE TALLY IS THE ADDRESS ASSOCIATED WITH DATA TAKING AND TALLYCHECK
CONTROLS THE DEMAND SIGNAL.

NOTE IN THE SECOND EXAMPLE THERE ARE TWO COUNTERS SO THE FOLLOWING
DECLARATIONS ARE MADE.

TALLY A = TALLY.
TALLYCHECKA = TALLYCHECK.

COUNTERB Z N(3).
TALLYB = COUNTERB A(O).
TALLYCHECKB = COUNTER 1(1) G2.

It will be noted that 'TALL YCHECK' is accessed via subaddress A(1) and that 'TALL YCHECKB' is
accessed by the bit position 1(1) of a Group Two Register. Having made these declarations the
programmer may treat the two demand sources identically in the subsequent program.

NOTE AS AN AID TO PROCESSING, THE RESULTS FROM EACH TEST ARE FED AS
BINARY NUMBERS (24 BIT MAXIMUM) TO A HARDWARE CONVERTER; A STRING
OF 8 ASCII DECIMAL CHARACTERS (WITH LEADING ZEROS REPLACED BY
SPACES) MAY THEN BE READ FROM THE CONVERTER; INTERNAL STATUS (Q=l)
IS GENERA TED WHEN THE CONVERSION IS COMPLETE.

The period could not be used within the above as it would have terminated the note.

28

CONVERTER
BINARYINPUT
ASCII OUTPUT

= Z N(4) A(O).
= CONVERTER.

CONVERTER S.

The access qualifier (S) indicates that the output of the converter operates in the Stop Mode of Q;
that is Q= 1 indicates that a valid word has been read, while Q=O indicates that end-of-block has
been passed.

PRINTER = Z N(6) A(O) R.

NOTE THIS MODULE INTERFACES A TELETYPEWRITER TO CAMAC: AFTER TYPING A
CHARACTER IT RAISES A LAM DEMAND TO ASK FOR THE NEXT CHARACTER
(IF LAM IS ENABLED).

The access qualifier (R) indicates that the module operates in Repeat Mode of Q, giving Q=O if it is
unable to accept data.

STOPCONTROL = Z N(7) A(O).

NOTE THIS IS A MANUAL CONTROL TO STOP BOTH TESTS.

CHARACTERISTICS(! :4) = Z N(l :4) A(l5) G2.

The first four modules have bit patterns describing their characteristics at the preferred subaddress
Al5 and are accessed by Group 2 functions as indicated by G2.

DATACRATEX
DX
DATACRATEY
DY

= APPARATUS C(2).
DATACRATEX.

= APPARATUS C(3).
= DATACRATEY.

The method of hierarchic naming is continued for t\YO further crates. Again this eases the problems
of relocation of the hardware.

The following is a method of generating arrays of uniformly distributed hardware which avoids
errors in calculation and eases the problem of subsequent modification.

CEQV. M = 10 \NUMBER OF MODULES.
w = 2 \MODULE WIDTH.
F = W \FIRST ADDRESS.
L = (M-1) * W +F.\ LAST ADDRESS.

CNAME. MEANTEMPS(1 : M) = DX N(F:L:W) A(O) P.

The array MEANTEMPS has 10 elements in Crate 2 starting at N=2 and progressing to N=20 by
increments of 2. The required registers are located at subaddress A(O) in each module. Because the
elements all require the same subaddress this array may be accessed in parallel for appropriate
functions (e.g. CLEAR). This is indicated by the access function (P). The same array could also be
accessed in the Address Scan mode of Q for other functions (e.g. READ). In order to be unam­
biguous in the access mode to be used, a distinct name is given as follows:

SEQUTEMPS (1 : M) - MEANTEMPS(l :M) Q.

It will be noted that when MEANTEMPS is used on the right-hand side it does not imply its
previously defined access qualifier.

PEAKPRESSA(1 :4) = DY N(l:2) A(O:l).

This declaration expands to give the following sequence of addresses.

NOTE

PEAKPRESSB(l :4)

B(l)
B(l)
B(l)
B(l)

C(3)
C(3)
C(3)
C(3)

N(l)
N(l)
N(2)
N(2)

= DY A(O:l) N(3:4).

A(O)
A(l)
A(O)
A(l).

This declaration expands to give a different sequence of addresses.

NOTE B(l)
B(l)
B(l)
B(l)

C(3)
C(3)
C(3)
C(3)

N(3)
N(4)
N(3)
N(4)

A(O)
A(O)
A(l)
A(l).

This organisation of the CAMAC address fields permits an array to be built up to give the most
suitable sequence for subsequent processing.

FLOWA(l :5) = DY N(5,19,7,9,11) A(O).

FLOWB(l :5) = DY N(l3:17:2) A(O),
Z N(l 0) A(O),
B(l) C(3) N(21) A(O).

In practice the form B(l) C(3) N(21) A(O) would not be used in conjunction with the technique of
hierarchical naming since it does not give automatic address modification when, for example, the
physical address of the crate is changed.

CRATES(l :3)
BRANCHDEMAND(l :3) =

Z, DX, DY.
CRATES(l :3) N(30) A(lO) P.

This declaration makes use of the vjrtual address in Crate Controller A which controls the BD signal.
The parallel access (P) permits the BD signals to be enabled and disabled at source in the three crates
at the same time.

This completes the naming of the units but these may now be compounded into further arrays if
required.

INSTRUMENTSA(l: 14)

INSTRUMENTSB(l: 14)

TESTA(l: 15)

TESTB(l: 15)

MEANTEMPS(1: 5),
PEAKPRESSA(l :4),
FLOWA(l :5).

MEANTEMPS(6: 10),
PEAKPRESSB(l: 4),
FLOWB(1 : 5).

INSTRUMENTSA(1: 14), TALLY A.

= INSTRUMENTSB(l: 14), TALLYB.

The arrays TEST A and TESTB could have been built up initially from the individual units or via a
map.Ping technique, as shown in the second example.

30

The method shown here is chosen for ease of reconfiguration and is virtually self-documenting.

\DEMAND DECLARATIONS.

The Demand Declarations permit names to be given to the demands for subsequent use, and make a
permanent connection between these demands and the hardware addresses at which they are
controlled. They also allow the specific bit (in the Graded-L pattern) associated with the demand to
be defined.

CDMD. DONE
A DONE
BDONE
NEXT

\SOFTWARE DECLARATIONS.
CDCL.

CAMACLENGTH
DATA(l: 17) L.

= TALLYCHECKGL20.
= TALLYCHECKA GL20.
= TALL YCHECKB GL19.
= PRINTER GL16.

The access qualifier L identifies 'DATA' as an array which may be accessed as a list.

COMPUTERLENGTH
LETTER,
TEMPORARY,
LIMIT,
ENDJOB.

NOTE COMPUTER LENGTH IN THIS APPLICATION IS 16 BITS.

These declarations define all variables used in CAMAC language statements. Because TEMPORARY
is only used by CAMAC it need not conform to the host language conventions.

CAMACADDRESS
UNITS(1: 15),
UNITS A(1: 15),
UNITSB(l: 15).

In the CAMAC statements indirect reference is made to hardware addresses via core locations. This
permits run-time modification to these addresses- at least to the extent of interchanging addresses.
The above declarations reserve the locations required to hold the CAMAC addresses in some
appropriate form.

UNITSA(1: 14)
UNITSA(l5)
UNITSB(l: 14)
UNITSB(15)

INSTRUMENTSA(1: 14).
= TALLY.
= INSTRUMENTSB(1: 14).

TALLY.

These declarations specify the previously defined BCNA addresses which are to be listed in sequence
in the previously defined address space.

NOTE THIS COMPLETES THE CAMAC DECLARATIONS SECTION.

31

The program continues with the host language declarations including any required to establish links
with CAMAC statements; for example it may be necessary to repeat the CAMAC software
declarations in the form of GLOBAL declarations.

This is followed by the action statements of the program. The order of presentation here is not
necessarily that which would be followed normally.

CACT.

NOTE IN THE FIRST EXAMPLE TESTA IS STARTED; WHEN THE TALLY RUNS OUT A
DEMAND 'DONE' CALLS AN INTERRUPT ROUTINE WHICH STOPS TESTA, READS
THE RESULTS AND PRINTS THEM; TESTB IS THEN STARTED AND SO ON."

EXAMPLE!: ENDJOB = FALSE;
?INITIALISE APPARATUS"

This is an isolated CAMAC statement embedded in host language. It is bracketed by the equivalents
of BEGINCAMAC(?) and ENDCAMAC("). It disables all demand sources, clears data registers and
applies an overall inhibit to the equipment.

LF(l) = 138;

The above is assumed to be a host language statement which loads the character code value for
Line Feed into the location LF(1).

?STOPDATA
STOPDATA

UNITS A(1 : 15).
UNITSB(1: 15).

These statements make indirect references to hardware addresses via the core locations assigned in
the CAMACADDRESS declarations.

CLEARINHIBIT CRATES(1 : 3).
ENABLE BRANCHDEMAND(l :3)"
CALL SETUPA;
CALL START;

The program now continues with other activities, irrelevant to this example, which will be
interrupted.

The subroutines called are as follows:

SUBROUTINE SETUPA;
FLAG A
UNITS(l: 15) =
LIMIT =
LETTER =
RETURN;
END;

FALSE;
UNITSA(l: 15);
1000;
'A';

In the above host language subroutine the statements have the following meanings. The Boolean
variable FLAGA is set to false, the array UNITS is loaded with the values held in UNITSA, LIMIT is
loaded with the decimal value 1000 and LETTER is loaded with the ASCII value for letter A.
RETURN is the run time exit from the subroutine and END defines the lexical termination of
this section.

32

SUBROUTINE START;
EXTERNAL READANDPRINT;

?LINK (DONE, READANDPRINT).
CLEAR UNITS(1 : 15).
WRITE LIMIT TALLY.
ENABLAM TALLYCHECK.
TAKEDATA UNITS(l: 15)."
RETURN;
END;

The subroutine START uses CAMAC language action statements to operate on the hardware in the
manner defined by the previous SETUP A subroutine. TAKEDA TA, previously equivalenced to
ENABLE, starts the hardware operations. When the Tally runs out it generates the demand 'DONE'
which causes 'READANDPRINT' to run.

? NOTE INTERRUPT ROUTINE ACCESSED BY DONE."

READ AND PRINT: EXTERNAL CHARACTER;
?STOPDATA UNITS(l: 15).
RESETLAM TALLYCHECK.
READ TIME(l: 3) DA T A(l: 3).
READ UNITS(l: 14) DATA(4: 17).
LINK (NEXT, CHARACTER).
WRITE DATA BINARYINPUT EXIT ERROR.

This statement accesses DATA as a list structure. Since this is the first access it will transfer the first
word from the list and should not perform the branching part of the statement.

DISABLAM PRINTER.
WRITE OCT '215' PRINTER. \CARRIAGE RETURN.
REPEAT(3) WRITE OCT '212' PRINTER.

This statement causes the octal value 212 = Line Feed to be written to the module controlling the
printer three times in succession. However the printer cannot accept a new write command until it
has dealt with the previous one and will return Q=O if the operation is unsuccessful (R :..node of Q).
The operation will therefore be repeated (possibly several thousand times) until three line feeds are
achieved.

ENABLAM PRINTER.
WRITE LETTER PRINTER.

NOTE AFTER PRINTING 'LETTER' THE PRINTER RAISES DEMAND 'NEXT'."

ERROR:
RESTORE;
error recovery action;
END;

? NOTE INTERRUPT ROUTINE ACCESSED BY NEXT.

CHARACTER:
READY:

RESETLAM PRINTER.
READ ASCIIOUTPUT TEMPORARY \S MODE OF Q.
IF Q GOTO TT.

The 'S mode of Q' gives Q= 1 if a valid transfer was performed by ~SCIIOUTPUT' and Q=O if the
string of digits in the converter have all been read.

33

WAIT:

TT:

?BUFFERMT:
WAIT2:
LASTNUMBER:

ANEXT:
SEQUENCE:
JOBDONE:

SUBROUTINE

WRITE DATA BINARYINPUT EXIT BUFFERMT.
IFNOT STATUS CONVERTER GOTO WAIT.
GOTO READY.
WRITE TEMPORARY PRINTER."
RESTORE;
LINK (NEXT, LASTNUMBER).
IFNOT STATUS CONVERT2R GOTO WAIT2.
RESTLAM PRINTER.
READ ASCIIOUTPUT TEMPORARY.
IF Q GOTO TT.
READ STOPCONTROL ENDJOB"
IF ENDJOB GOTO JOBDONE;
IF FLAGA GOTO ANEXT;
CALL SETUPB;
GOTO SEQUENCE;
CALL SETUP A;
CALL START;
RESTORE;

SETUPB;
FLAG A
UNITS(1: 15)
LIMIT
LETTER
RETURN;
END;

=
=

=
=

TRUE;
UNITSB(l: 15);
2000;
'B';

?NOTE THIS COMPLETES THE FIRST EXAMPLE.

CAMACSEGMENTEND

In the second example the hardware of TESTA and TESTB run in parallel and may call for
'PRINTOUT' in any order. The host language or operating system is assumed to have the real-time­
multi-task scheduling calls proposed in section 3.4.6. In this example the CAMAC action statements
are kept separate from host language statements and are contained within CAMACTASKS.

CAMAC-EXAMPLE-TWO;

CAMACSEGMENT EXAMPLETWO ENDSTATEMENT

34

CEQV

TAKEDATA
STOPDATA
ENABLAM
DISABLAM
RESETLAM

ENDSTA TEMENT
EQV ENDSTATEMENTENDSTATEMENT

? EQV BEGINCAMAC.
" EQV ENDCAMAC.
\ EQV NOTE.

EQV
EQV
EQV
EQV
EQV

F(26).
F(24).
F(26).
F(24).
F(l 0).

NOTE BY WAY OF EXAMPLE THE CAMACTASKS ASSOCIATED WITH THE PRINTOUT ARE
INCORPORATED IN A SEPARATE SEGMENT; THE RELEVANT DECLARATIONS
WILL THEREFORE BE MADE IN THAT SEGMENT.

The CAMAC apparatus used in this example is the same as that for example one. An alternative ·
method of naming the hardware is adopted here, solely as a demonstration of the techniques avail­
able to the programmer. The apparatus is first mapped onto an arbitrary array of hardware entities;
names are then assigned, as required, to elements of the array. Either method of naming could be
used in both examples.

\ CAMAC NAMING SECTION.

CNAME.

CRATES(l :3) = B(l) C(l :3).

MODULES(l: 15) = N(l) A(0:2),
N(2) A(O: 1),
N(3) A(2),
N(3,4,6,7, 1 0) A(O),
N(l :4) A(l5).

K(l: 15) = CRATES(1) MODULES(1 : 15).

TIME(l :3) K(3,2,1).
TALLY A = K(4).
TALLYCHECKA = K(5).
TALLYCHECKB = C(l) N(3) I(l) G2.
TALLYB = K(7).
BINARYINPUT = K(8).
ASCII OUTPUT K(8) S.
PRINTER = K(9) R.
STOPCONTROL = K(1 0).
CHARACTERISTICS(1 :4) = K(12: 15) G2.
CONVERTER = K(8).

L(l: 10) CRATES(2) N(2:20:2) A(O) P.

M(l: 17) = CRATES(3) N(l :4) A(O: 1),
CRATES(3) N(5:21 :2) A(O).

TESTA(l: 15) = L(l :5), M(l :4,9,16,10: 12), K(4).

TESTB(1: 15) = L(6: 1 0), M(5, 7 ,6,8, 13: 15),
K(11), M(17), K(7).

\DEMAND DECLARATIONS.

CDMD.
A DONE = TALLYCHECKA GL20.
BDONE = TALLYCHECKB GL19.
NEXT = PRINTER GL16.

35

\SOFTWARE DECLARATIONS.

CDCL.
CAMACLENGTH

DATA(l: 17) L,
DATAA(l: 17),
DATAB(l: 17).

COMPUTERLENGTH
LETTER,
LIMIT,
LF(l :3) L,
ENDJOB,
TEMPORARY.

\GLOBAL DECLARATIONS.

CREF. NAME PRINTER, BINARYINPUT, ASCIIOUTPUT, CONVERTER.

TASK FIRSTHINGS,
START A, STOPA, READA,
STARTB, STOPB, READB.

VARIABLE LETTER, LIMIT, ENDJOB, TEMPORARY.

ARRAY DATAA, DATAB.

LIST DATA, LF.

NOTE THIS COMPLETES THE CAMAC DECLARATIONS SECTION.

ENDCAMAC.

The program continues with the host language declarations including any required to establish links
with CAMAC statements; for example it may be necessary to repeat the CAMAC software declarations
in the form of GLOBAL declarations.

This is followed by the action statements of the program. The order of presentation here is not
necessarily that which would be followed normally.

EXAMPLE2:

36

CAMACTASK FIRSTHINGS;
DONOW (FIRSTHINGS);
ENDJOB = FALSE;
LF(l)= 138;LF(2)= 138;LF(3)= 138;
INITIATE (SEQUENCEA);
INITIATE (SEQUENCES);
AWAIT (SEQUENCEA);
A WAIT (SEQUENCES);
STOP;

COMMENT THIS GIVES THE OVERALL SCHEDULING: THE TASK FIRSTHINGS
INITIALISES THE HARDWARE, THE LOGICAL VARIABLE ENDJOB (WHICH
STOPS THE TESTS WHEN TRUE) IS SET TO FALSE, THE ARRAY LF(l:3) IS
LOADED WITH LINEFEED CODES AND THEN SEQUENCEA AND SEQUENCEB
ARE SCHEDULED: WHEN BOTH SEQUENCEA AND SEQUENCEB HAVE
COMPLETED THE JOB IS DONE;

COMMENT THE DETAILED SCHEDULING OF SEQUENCEA AND SEQUENCEB MAY NOW
BE SET OUT INDEPENDENTLY;

The aboye COMMENTS are assumed to be in host language because this section of the program
contains no CAMAC language statements.

TASK SEQUENCEA;
CAMACTASK STOPA, STARTA, READA;
ACTIVATE (STOPA, ADONE);
DONOW (STARTA);
AWAIT (STOPA);

LOOP A: DONOW (READA);
IF ENDJOB GOTO ENDA;
ACTIVATE (STOPA, ADONE);
DONOW (STARTA);
FLAGA = TRUE;
DONOW (PRINTOUT);
AWAIT (STOPA);
GOTOLOOPA;

ENDA: FLAGA = TRUE;
DONOW (PRINTOUT);
TASKDONE;
END;

COMMENT HAVING SCHEDULED STOPA TO RUN ON DEMAND ADONE, THE EQUIP­
MENT OF TESTA IS STARTED BY STARTA. WHEN THE TALLY RUNS OUT
ADONE IS GENERATED AND STOPA EXECUTED. WHEN STOPA COMPLETES
READ A COLLECTS THE DATA AND READS THE STOPCONTROL INTO
ENDJOB. IF ENDJOB IS NOT TRUE TESTA IS RESTARTED AND PRINTOUT
IS CALLED. SEQUENCEA WILL NOT CONTINUE UNTIL PRINTOUT HAS
COMPLETED AND STOPA HAS AGAIN BEEN COMPL~TED. IF ENDJOB IS
TRUE THE CURRENT RESULTS ARE PRINTED AND THE TASK TERMINATES;

COMMENT IN THIS EXAMPLE TESTA AND TESTB ARE SO SIMILAR THAT SEQUENCEA
AND SEQUENCEB ARE VIRTUALLY IDENTICAL;

TASK SEQUENCEB;
CAMACTASK STOPB, STARTB, READB;
ACTIVATE (STOPB, BDONE);
DONOW (STARTB);
A WAIT (STOPB);

LOOPB: DONOW (READB);
IF ENDJOB GOTO ENDB;
ACTIVATE (STOPB, BDONE);
DONOW (STARTB);
FLAGB = TRUE;
DONOW (PRINTOUT);
A WAIT (STOPB);
GOTO LOOPB;

37

ENDB:

TASK PRINTOUT;

FLAGB = TRUE;
DONOW (PRINTOUT);
TASKDONE;
END;

CAMACTASK LINEFEED, NEWLINE, CHARACTER,
MARKER, LASTNUMBER, STARTLAST;
IF FLAGA GOTO PRINT A;
IF FLAGB GOTO PRINTB;
GOTOERROR;

PRINT A: DATA(l: 17) DATAA(l: 17);
FLAGA FALSE;
LETTER = 'A';
GOTO PRINT;

PRINTB: DATA(l: 17) = DATAB(l: 17);

PRINT:

FLAGB = FALSE;
LETTER = 'B';
ACTIVATE (LINEFEED, NEXT);
DONOW (NEWLINE);
AWAIT (LINEFEED);
ACTIVATE (CHARACTER, NEXT);
DONOW (MARKER);
AWAIT (CHARACTER);
ACTIVATE (LASTNUMBER, NEXT);
DONOW (STARTLAST);
AWAIT (LASTNUMBER);
TASKDONE;
END;

COMMENT THE PRINTOUT TASK IS DELIBERATELY NON RE-ENTRABLE SINCE THE
RECORD OF ONE TEST MUST BE SEPARATED FRQM ANY OTHER. WHEN
ENTERED THE ROUTINE DETERMINES WHETHER SEQUENCEA OR
SEQUENCEB REQUIRED IT AND SETS UP THE ARRAY "DATA(1 : 1 7)' AND
THE IDENTIFYING LETTER APPROPRIATELY. IT THEN GENERATES A
CARRIAGE RETURN ("NEWLINE') FOLLOWED BY LINEFEEDS IN RESPONSE
TO THE DEMAND "NEXT' FROM THE PRINTER WHEN IT IS READY. AFTER
THREE LINEFEEDS THE IDENTIFIER IS PRINTED ("MARKER') AND THEN
THE RESULTS ("CHARACTER'). THE "LASTNUMBER' REQUIRES SPECIAL
TREATMENT;

BEGINCAMAC
The host language section of the program is now complete and the following is written exclusively
in the CAMAC language.

CACT.

CAM ACT ASK FIRSTHINGS.

38

INITIALISE APPARATUS.
STOPDATA TESTA(I: 15).
STOPDATA TESTB(l: 15).
CLEARINHIBIT CRATES(l :3).
ENABLE CRATES(l :3).
TERMINATE (FIRSTHINGS).
TASKEND.

NOTE 'INITIALISE APPARATUS' DISABLES ALL DEMANDS, CLEARS REGISTERS AND
APPLIES AN OVERALL INHIBIT; WHEN THE INDIVIDUAL UNITS HAVE BEEN
BROUGHT UNDER CONTROL THE OVERALL INHIBITIONS MAY BE REMOVED.

CAMACTASK START A. CLEAR TEST A(1 : 15).
WRITE 1 000 TALLY A \ DECIMAL 1000.
ENABLAM TALLYCHECKA.
TAKEDATA TESTA(l: 15)
TERMINATE (STARTA).
TASKEND.

NOTE HAVING CLEARED THE DATA REGISTERS AND LOADED THE HARDWARE TALLY,
THE DEMAND SOURCE IS ENABLED AND DATA TAKING STARTED; WHEN THE
TALLY RUNS OUT DEMAND 'ADONE' CALLS FOR TASK 'STOPA'.

CAMACTASK STOPA. STOPDATA TEST A(l: 15).
RESETLAM TALLYCHECKA.
TERMINATE (STOPA).
TASKEND.

NOTE THE SCHEDULING ENSURES THAT TASK READA IS NOT ENTERED UNTIL ARRAY
'DATAA' IS FREE.

CAMACTASK READA. READ TIME(l :3) DATAA(l :3).
READ TESTA(l: 14) DATAA(4: 17).
READ STOPCONTROL ENDJOB.
TERMINATE (READ A).
TASKEND.

NOTE THE TASKS ASSOCIATED WITH SEQUENCEB ARE OF THE SAME FORM.

CAMACTASK STARTB.

CAMACTASK STOPB.

CAMACTASK READB.

CLEAR TESTB(l: 15).
WRITE 2000 TALL YB \ DECIMAL 2000.
ENABLE BDONE.
TAKEDA T A TESTB(l : 15).
TERMINATE (STARTB).
TASKEND.

STOPDATA TESTB(l: 15).
DISABLE BDONE.
TERMINATE (STOPB).
TASKEND.

READ TIME(l :3) DATAB(l :3).
READ TESTB(l: 14) DATAB(4: 17).
READ STOPCONTROL ENDJOB.
TERMINATE (READB).
TASKEND.

NOTE FURTHER TASKS ARE CONTAINED IN THE NEXT SEGMENT.

CAMACSEGMENTEND

39

CAMACSEGMENT CAMACPRINTOUT ENDST A TEMENT

CEQV ENDST A TEMENT

CNAME.

CDCL.

CREF.

CACT.

EQV ENDST A TEMENT ENDST A TEMENT

PRINTER
BINARYINPUT
ASCII OUTPUT
CONVERTER

EXT (A) R.
EXT (A).

= EXT (A) S.
= EXT (A).

EXT LF(l :3) L, DATA(l :64) L, LETTER, TEMPORARY.

TASK NEWLINE, LINEFEED, MARKER, CHARACTER, STARTLAST,
LASTNUMBER.

NOTE THE FOLLOWING ARE THE TASKS ASSOCIATED WITH PRINTOUT.

CAMACTASK NEWLINE.

CAMACTASK LINEFEED.

SHIFTED:

ENABLAM PRINTER.
WRITE OCT '215' PRINTER\ CARRIAGE RETURN.
TERMINATE (NEWLINE).
TASKEND.

RESETLAM PRINTER.
WRITE LF PRINTER EXIT SHIFTED.
QUIT (LINEFEED).

DISABLAM PRINTER.
TERMINATE (LINEFEED).
TASKEND.

NOTE NEWLINE IS INITIATED FROM THE COMPUTER AND PRINTS CARRIAGE RETURN;
THE RESULTING DEMAND 'NEXT' CALLS 'LINEFEED' AND PRINTS LINEFEED
(CONTENTS OF LF(l)); SUBSEQUENT DEMANDS REPEAT THIS TASK AT LF(2)
AND LF(3).

CAMACTASK MARKER. RESETLAM PRINTER.
WRITE DATA BINARYINPUT EXIT ERROR.
WRITE LETTER PRINTER.
ENABLE PRINTER.

ERROR: TERMINATE (MARKER).
TASKEND.

NOTE MARKER PRINTS THE IDENTIFIER A OR B; THE RESULTING DEMAND 'NEXT'
CALLS 'CHARACTER' WHICH PRINTS THE CONVERTED BINARY NUMBERS UNTIL
THE LAST ONE IS BROUGHT FROM CORE.

CAMACT ASK CHARACTER.
READY:

40

RESETLAM PRINTER.
READ ASCIIOUTPUT TEMPORARY.
IF Q GOTO TT.
WRITE DATA BINARYINPUT EXIT BUFFERMT.
REPEAT (50) IF STATUS CONVERTER GOTO READY.
GOTO ERROR 2.

TT:

BUFFERMT:
ERROR 2:

CAMACTASK STARTLAST.

WRITE TEMPORARY PRINTER.
QUIT (CHARACTER).

IFNOT STATUS CONVERTER GOTO BUFFERMT.
TERMINATE (CHARACTER).
TASKEND.

MOVE ASCIIOUTPUT PRINTER.

The above statement has two external addresses, the source followed by the destination.

TERMINATE (STARTLAST).
TASKEND.

CAMACTASK LASTNUMBER. RESETLAM PRINTER.
MOVE ASCIIOUTPUT TEMPORARY.
IFNOT Q GOTO ENDPRINT.
MOVE TEMPORARY PRINTER.
QUIT (LASTNUMBER).

ENDPRINT: DISABLAM PRINTER.
TERMINATE (LASTNUMBER).
TASKEND.

NOTE 'MOVE' HAS MEANING 'TRANSFER', 'READ' AND 'WRITE' IN THE ABOVE.

NOTE 'STARTLAST' TRANSFERS THE FIRST ASCII CHARACTER OF THE LAST BINARY
NUMBER TO THE PRINTER; THE RESULTING DEMAND 'NEXT' CALLS
'LASTNUMBER' AND PRINTS THE NEXT CHARACTER: SUBSEQUENT DEMANDS
REPEAT THIS TASK UNTIL THE LAST CHARACTER HAS BEEN PRINTED.

NOTE THIS COMPLETES THE SECOND EXAMPLE.

CAMACSEGMENTEND

41

42

Membership of the Software Working Groups

ESONE Software Working Group.

E. De Agostino, CNEN-CSN Cassaccia, Italy

w. Attwenger, SGAE Wien, Austria

Palle Christensen, AEC Rise, Denmark

W. K. Dawson, Dep. Phys. Univ. Alberta, Canada

P. Elzer, Phys. Inst. Uni Erlangen, Germany

H. Halling, KFA JUlich, Germany (Secretary)

J. Harneit, GfK Karlsruhe, Germany

I. N. Hooton, AERE Harwell, England (Chairman)

A. Katz, CEN Saclay, France

H. Klessmann, HMI Berlin, Germany

A. Lewis, AERE Harwell, England

J. Lukacs, MTA-KFKI Budapest, Hungary

B. E. F. Macefield, Nucl. Phys. Univ. Oxford, England

H. J. Metzdorf, Euratom Ispra, Italy

H. Meyer, BCMN Geel, Belgium

R. Patzelt, T.H. Inst. f. Elek.Messtchnik Wie~, Austria

A. c. Peatfield, DNPL Daresbury, England

P. Quivy, CENG Grenoble, France

H.-J. Trebst, Phys. Inst. Uni Erlangen, Germany

I. P. Vanuxem, CERN Geneva, Switzerland

P. Wilde, RHEL,Chilton, England

W. Woletz, HMI Berlin, Germany

NIM-CAMAC Software Working Group.

L. Costrell, NBS Washington DC 20234
R. Cottrell, SLAC, Stanford CA 94305
W. K. Dawson, TRIUMF Vancouver, Canada

Satish Dhawan, Yale, New Haven, Connecticut o6520 (Chairman)

D. Gustafson, SLAC, Stanford CA 94305
c. P. Hohberger, BNL, Upton, Long Island, N.Y. 11973
F. A. Kirsten, LBL Univ. of California, CA 94720
R. A. LaSalle, Flastate Univ., Tallahasse, Florida 323o6

F. R. Lenkszus, ANL, Argonne, Illinois 60439
L. Robinson, Lick Observatory, Santa Cruz, CA 95060
D. Rosenberg, NAL, Batavia, Illinois 60510
R. F. Thomas Jnr. LASL Los Alamos, New Mexico 87544 (deputy chairman)

INSTRUMENTSA

INSTRUMENTS8

~MEANTEM
(1:5) PS_{

.,_ ____ -+-_MEANT EM
(6:10) PS_{

~PEAKPRE
(1:4)

PEAKPRE ------+-- (1:4)

-FLOWA(1

...__ ______ FLOWB (1

CHARACTERISTICS (1

TIME (1:3)--- Ml

SSA_{

SSB_{

:5)-{

:5)-{

:4)-{

CON OS--
NUTES--

{

SE

HO URS---

HECKA--
TALLY A
TALLYC
TALL VB
TALLYC HECKB--

C(2) N(2) A(O)
C(2) N(4) A(O)
C(2) N(6) A(O)
C(2) N(8) A(O)
C(2) N(10) A(O)

C(2) N(12) A(O)
C(2) N(14) A(O)
C(2) N(16) A(O)
C(2) N(18) A(O)
C(2) N(20) A(O)

C(3) N(1) A(O)
C(3) N(1) A(1)
C(3) N(2) A(O)
C(3) N(2) A(1)

C(3) N(3) A(O)
C(3) N(4) A(O)
C(3) N(3) A(1)
C(3) N(4) A(1)

C(3) N(5) A(O)
C(3) N(19) A(O)
C(3) N(7) A(O)
C(3) N(9) A(O)
C(3) N(11) A(O)

C(3) N(13) A(O)
C(3) N(15) A(O)
C(3) N(17) A(O)
C(1) N(10) A(O)
C(3) ~(21) A(O)

C(1) N(1) A(15)
C(1) N(2) A(15)
C(1) N(3) A(15)
C(1) N(4) A(15)

C(1) N(1) A(O)
C(1) N(1) A(1)
C(1) N(1) A(2)

C(1) N(2) A(O)
C(1) N(2) A(1)
C(1) N(3) A(O)
C(1) N(3) 1(1)

INPUT BINARY
ASCI IOU TPUT

}--C(1) N(4) A(O)

PRINTER
STOPCON TROL--

C(1) N(6) A(O)
C(1) N(7) A(O)

.-

I

!

I
I

8(1) APPAR

Fig. 1 Hardware addresses used in sample programs

ATUS

8(1) C(2) .
DATACRATEX
ox

8(1) C(3)
DATACRATEY
DV

8(1) C(1)
CONTROLCRATE
z

